Writing a dataset definition
In this section, you will write the following dataset definition. It selects the date and the code of each patient's most recent asthma medication, for all patients born on or before 31 December 1999.
from ehrql import Dataset
from ehrql.tables.beta.core import patients, medications
dataset = Dataset()
dataset.define_population(patients.date_of_birth.is_on_or_before("1999-12-31"))
asthma_codes = ["39113311000001107", "39113611000001102"]
latest_asthma_med = (
medications.where(medications.dmd_code.is_in(asthma_codes))
.sort_by(medications.date)
.last_for_patient()
)
dataset.asthma_med_date = latest_asthma_med.date
dataset.asthma_med_code = latest_asthma_med.dmd_code
Create an empty dataset definition🔗
From the menu, using New File..., create an empty dataset definition called dataset_definition.py.
For the remainder of this section, you should type the code into dataset_definition.py.
Interact with the code in the sandbox
As well as typing the code into dataset_definition.py,
you can interact with the code in the sandbox.
Remember, when you see >>>
,
you should type the code that follows into the sandbox and press Enter.
Import the Dataset
object🔗
Think of the Dataset
object as a blueprint for a dataset.
from ehrql import Dataset
Import the Dataset
object
>>> from ehrql import Dataset
Import the tables🔗
The patients
table is a patient frame; it has one row per patient.
The medications
table is an event frame; it has many rows per patient.
from ehrql.tables.beta.core import patients, medications
Import the tables
>>> from ehrql.tables.beta.core import patients, medications
Create the dataset🔗
Create the dataset from the Dataset
object.
dataset = Dataset()
Define the population🔗
Define the population as all patients born on or before 31 December 1999.
dataset.define_population(patients.date_of_birth.is_on_or_before("1999-12-31"))
Define the population condition
.define_population
takes a population condition in the form of a boolean patient series.
However, patients.date_of_birth
is a date patient series.
>>> patients.date_of_birth
0 | 1973-07-01
1 | 1948-03-01
2 | 2003-04-01
3 | 2007-06-01
4 | 1938-10-01
5 | 1994-04-01
6 | 1953-05-01
7 | 1992-08-01
8 | 1931-10-01
9 | 1979-04-01
To transform a date patient series into a boolean patient series,
use .is_on_or_before
with a date.
>>> patients.date_of_birth.is_on_or_before("1999-12-31")
0 | True
1 | True
2 | False
3 | False
4 | True
5 | True
6 | True
7 | True
8 | True
9 | True
Select each patient's most recent asthma medication🔗
Define a list of asthma codes.
Filter the medications
event frame,
so that it contains rows that match the asthma codes on the list.
Sort the resulting event frame by date,
so that the most recent asthma medication is the last row for each patient.
From the resulting event frame,
select the last row for each patient.
The result is a patient frame that contains each patient's most recent asthma medication.
asthma_codes = ["39113311000001107", "39113611000001102"]
latest_asthma_med = (
medications.where(medications.dmd_code.is_in(asthma_codes))
.sort_by(medications.date)
.last_for_patient()
)
Unpack the filter, the sort, and the select
Define a list of asthma codes.
>>> asthma_codes = ["39113311000001107", "39113611000001102"]
medications.dmd_code
is a code event series.
>>> medications.dmd_code
0 | 0 | 39113611000001102
1 | 1 | 39113611000001102
1 | 2 | 39113311000001107
1 | 3 | 22777311000001105
3 | 4 | 22777311000001105
4 | 5 | 39113611000001102
5 | 6 | 3484711000001105
5 | 7 | 39113611000001102
7 | 8 | 3484711000001105
9 | 9 | 3484711000001105
Create a filter condition in the form of a boolean patient series.
>>> medications.dmd_code.is_in(asthma_codes)
0 | 0 | True
1 | 1 | True
1 | 2 | True
1 | 3 | False
3 | 4 | False
4 | 5 | True
5 | 6 | False
5 | 7 | True
7 | 8 | False
9 | 9 | False
Filter the medications
event frame,
so that it contains rows that match the asthma codes on the list.
>>> medications.where(medications.dmd_code.is_in(asthma_codes))
patient_id | row_id | date | dmd_code
------------------+-------------------+-------------------+------------------
0 | 0 | 2014-01-11 | 39113611000001102
1 | 1 | 2015-08-06 | 39113611000001102
1 | 2 | 2018-09-21 | 39113311000001107
4 | 5 | 2017-05-11 | 39113611000001102
5 | 7 | 2019-07-06 | 39113611000001102
Sort the resulting event frame by date, so that the most recent asthma medication is the last row for each patient.
>>> medications.where(medications.dmd_code.is_in(asthma_codes)).sort_by(medications.date)
patient_id | row_id | date | dmd_code
------------------+-------------------+-------------------+------------------
0 | 0 | 2014-01-11 | 39113611000001102
1 | 1 | 2015-08-06 | 39113611000001102
1 | 2 | 2018-09-21 | 39113311000001107
4 | 5 | 2017-05-11 | 39113611000001102
5 | 7 | 2019-07-06 | 39113611000001102
From the resulting event frame, select the last row for each patient.
>>> medications.where(medications.dmd_code.is_in(asthma_codes)).sort_by(medications.date).last_for_patient()
patient_id | date | dmd_code
------------------+-------------------+------------------
0 | 2014-01-11 | 39113611000001102
1 | 2018-09-21 | 39113311000001107
4 | 2017-05-11 | 39113611000001102
5 | 2019-07-06 | 39113611000001102
Add dates and codes to the dataset🔗
Transform the patient frame into two patient series; one of dates and one of codes. Add them to the dataset.
dataset.asthma_med_date = latest_asthma_med.date
dataset.asthma_med_code = latest_asthma_med.dmd_code
Save the dataset definition🔗
From the menu, using File > Save, save the dataset definition.